Carbon Credit Quality and Integrity: Building Trust in Voluntary Carbon Markets

Carbon markets rely on trust. A carbon credit is only valuable if it represents a real, additional, and permanent reduction or removal of greenhouse gases. Yet, the voluntary carbon market (VCM) has faced intense criticism. Investigations into over-credited REDD+ projects, corporate greenwashing, and inconsistent methodologies have shaken confidence. The solution lies in quality and integrity. Buyers, investors, and communities all need assurance that credits meet clear standards. This blog explores what makes a carbon credit high quality, the common risks that undermine integrity, and how emerging global frameworks aim to restore credibility in carbon markets.


What Defines Carbon Credit Quality?
Infographic showing five principles of high-quality carbon credits: additionality, permanence, avoiding leakage, accurate quantification, and no double counting.

A high-quality carbon credit should meet five key principles:

  1. Additionality The project would not have happened without carbon finance. Example: A reforestation effort in degraded land that had no alternative funding.
  2. Permanence Emission reductions or removals should last over the long term. Forest projects risk reversal from fires or logging, so buffer pools and insurance mechanisms are used.
  3. Avoiding Leakage Reductions in one area should not cause emissions elsewhere. Example: Preventing deforestation in one region should not push logging to another.
  4. Accurate Quantification Credits should reflect real, measurable impacts, based on transparent methodologies.
  5. No Double Counting A credit should only be claimed once — by either a company, a country, or both under strict Article 6 accounting rules.

The Integrity Problem in VCMs

Despite progress, the VCM has suffered from integrity concerns: -Over-Crediting: Projects generating more credits than the actual emissions avoided or removed. -Greenwashing: Corporates buying cheap credits without reducing their own emissions. -Low-Quality Projects: Some cookstove or renewable energy credits criticized for lack of additionality. -Opacity: Buyers often lack visibility into project details. These issues depress demand and reduce willingness to pay higher prices for credits.


Core Carbon Principles (CCPs)
Infographic summarizing ICVCM’s Core Carbon Principles, including additionality, permanence, transparent quantification, no double counting, and strong governance.

The Integrity Council for the Voluntary Carbon Market (ICVCM) introduced the Core Carbon Principles (CCPs) to define high-quality credits. CCPs require: -Additionality and strong baseline setting. -Permanence risk management. -Transparent quantification methodologies. -No double counting or double claiming. -Strong governance and independent oversight. Credits that meet CCP standards can earn the “CCP label,” helping buyers identify trustworthy offsets.


Article 6 and Integrity

Article 6 of the Paris Agreement allows countries to trade Internationally Transferred Mitigation Outcomes (ITMOs). It aims to: -Ensure robust accounting rules to prevent double counting. -Align voluntary credits with national climate goals (NDCs). -Increase demand for high-quality credits with compliance value. Article 6 could raise integrity but also introduces complexity, as countries may restrict exports to protect domestic mitigation.


Risks that Undermine Integrity

  1. Non-Permanence: Reversal risk in forestry projects.
  2. Weak Baselines: Inflated estimates leading to over-crediting.
  3. Poor Governance: Lack of local community involvement.
  4. Market Incentives: Pressure to maximize credit issuance.
  5. Transparency Gaps: Limited public access to monitoring data.

Tools for Ensuring Quality

-MRV and dMRV: Continuous monitoring reduces errors and fraud. -Third-Party Verification: Independent auditors review methodologies. -Buffer Pools and Insurance: Protect against non-permanence risks. -Registries: Track credit ownership to prevent double counting. -Community Engagement: Ensures projects respect social safeguards.


Case Studies

REDD+ Controversies

Investigations showed that some projects overstated avoided deforestation, leading to inflated credits. This highlighted the need for stricter baselines.

Gold Standard Cookstoves

Projects with rigorous household surveys and transparent methodologies have retained credibility.

Biochar and DAC Projects

As removal technologies, these credits often fetch premium prices due to permanence and quantifiable impacts.


The Role of Buyers and Corporates

Buyers also shape integrity by: -Prioritizing CCP-labeled credits. -Disclosing carbon offset use in sustainability reports. -Combining offsets with internal emissions reductions. Corporates that simply buy cheap credits without decarbonizing face reputational risks.


Future of Carbon Credit Integrity

-Market Consolidation: Weak registries and low-quality methodologies may fade out. -Digital Innovation: dMRV and blockchain will enhance transparency. -Higher Prices: Buyers will pay premiums for high-quality credits. -Policy Alignment: Article 6 integration will increase accountability. The VCM is evolving from a “buyer beware” market to one where quality is clearly labeled and rewarded.


Conclusion

The value of a carbon credit depends entirely on its quality and integrity. Weak credits undermine trust, but strong standards, robust MRV, and global frameworks like CCPs and Article 6 are driving change. The transition will not be smooth, but as transparency and accountability improve, high-quality credits will command higher demand and play a vital role in financing climate solutions. Carbon markets don’t just need more credits — they need better credits. That’s how the VCM will scale with integrity.


About Anaxee: Anaxee drives large-scale, country-wide Climate and Carbon Credit projects across India. We specialize in Nature-Based Solutions (NbS) and community-driven initiatives, providing the technology and on-ground network needed to execute, monitor, and ensure transparency in projects like agroforestry, regenerative agriculture, improved cookstoves, solar devices, water filters and more. Our systems are designed to maintain integrity and verifiable impact in carbon methodologies.

An Anaxee field worker photographs a ground-mounted solar panel array in a lush farm, documenting a solar-agriculture pilot in rural India.

Beyond climate, Anaxee is India’s Reach Engine- building the nation’s largest last-mile outreach network of 100,000 Digital Runners (shared, tech-enabled field force). We help corporates, agri-focused companies, and social organizations scale to rural and semi-urban India by executing projects in 26 states, 540+ districts, and 11,000+ pin codes, ensuring both scale and 100% transparency in last-mile operations. Connect with Anaxee at sales@anaxee.com

Risks in Biochar Projects and How to Manage Them

Risks in Biochar Projects and How to Manage Them

Introduction

The global carbon market is placing increasing trust in biochar as one of the most promising tools for carbon dioxide removal (CDR). In 2023–2024, biochar accounted for more than 90% of all durable carbon removal deliveries in the voluntary carbon market.

But like any climate solution, biochar is not without risks. Critics often ask: Is the carbon really locked away? What if projects exaggerate? Can small kilns in rural areas be trusted to deliver verified credits?

These are important questions. A strong carbon market needs credibility, transparency, and risk management. This blog explores the main risks in biochar projects — and how innovators, developers, and standards are addressing them.


1. Non-Additionality Risk

What it means:
For a project to generate carbon credits, it must prove that it would not have happened without carbon finance. If the activity is “business as usual,” then credits are not additional.

How it applies to biochar:

-If a farmer already makes biochar for soil improvement without carbon finance, issuing credits for the same activity risks double counting.

-Large industrial biomass users might switch to biochar anyway due to regulation or cost advantages, raising questions about additionality.

How to manage:

-Rely on clear baseline studies to show the biomass would have otherwise decomposed or been burned.

-Require third-party verification at project registration.

-Standards like Verra VM0044 and Puro.earth mandate strict baseline documentation.


2. Reversal Risk

What it means:
Carbon stored today could be released tomorrow. In forestry projects, this often happens when trees burn or are cut down.

Why biochar is stronger:
Biochar is much more chemically stable than biomass. Its carbon structures resist microbial decay, with lifespans of hundreds to thousands of years.

But risks still exist:

-Poorly made biochar (low pyrolysis temperatures, high volatile matter) may degrade faster.

-Fire in storage sites could destroy stockpiled biochar before application.

-Incorrect use in soils may reduce permanence.

How to manage:

-Follow strict pyrolysis quality guidelines (high-temperature production).

-Apply biochar quickly to soils or construction materials instead of stockpiling.

-Conduct lab tests on stability indicators like the H/C ratio.

-Use buffer pools (extra credits held in reserve) as insurance.


3. Over-Crediting Risk

What it means:
Projects may issue more credits than the actual carbon removed.

Causes in biochar:

-Misreporting feedstock origin (using biomass that would not have released CO₂ anyway).

-Inflated assumptions about carbon stability.

-Errors in mass-balance calculations of biomass in vs. biochar out.

How to manage:

-Registries require conservative factors in calculations.

-Third-party auditors must validate data before credits are issued.

-Digital MRV tools (like Planboo’s mobile MRV) ensure field-level traceability.


4. Leakage Risk

What it means:
A project reduces emissions in one place but causes an increase elsewhere.

Examples in biochar:

-Diverting crop residues from animal fodder to pyrolysis could force farmers to use alternative feed with its own emissions.

-Using wood that would otherwise have been used in local industries.

How to manage:

-Allow only true waste biomass as feedstock.

-Conduct surveys of local uses of residues.

-Require projects to show that no alternative market is disrupted.


5. Negative Social or Environmental Impacts

Concerns:

-Low-tech kilns may release methane or smoke, harming local air quality.

-If biochar demand drives biomass plantations, it could compete with food or forests.

-Communities may not benefit if projects are highly centralized.

Solutions:

-Train operators in clean pyrolysis techniques.

-Adopt artisanal methodologies (like CSI Artisan) that focus on smallholder inclusion.

-Monitor co-benefits: jobs created, crop yield increases, gender participation.

Case Study:

-Varaha and IIT Bombay studied methane risks in poorly run pyrolysis. Findings led to improved kiln design.

-Carboneers in Ghana provide 500% income boosts for women by involving them in small-scale biochar projects.


6. Delivery Risk

What it means:
The project promises credits but fails to deliver on time.

Why it happens:

-Feedstock shortages due to crop failure.

-Technical problems in reactors.

-Over-ambitious targets.

How to manage:

-Diversify feedstock sources.

-Use modular reactors for flexibility.

-Sign smaller offtake contracts at the start, then scale.

-Build partnerships with farmer networks (like Anaxee’s Digital Runner network) for reliable biomass supply.


7. Reputation and Market Risks

Concerns:

-Negative media coverage about “low-quality credits” can affect all biochar projects, even good ones.

-Buyers are cautious after controversies in REDD+ and cookstove credits.

Solutions:

-Radical transparency in project reporting.

-Use digital dashboards for buyers to track biochar production in near real-time.

-Third-party endorsements from scientific bodies.


8. How Standards and Innovation Reduce Risks

The good news is that biochar risks are manageable — and are already being managed.

-Standards (Verra, Puro, Isometric, CSI) provide strict guardrails.

-Innovation (digital MRV, blockchain tracking, IoT-enabled kilns) increases trust.

-Community-first models ensure social acceptance and equitable benefit-sharing.

Together, these approaches make biochar one of the lowest-risk removal credits compared to other methods like forestry or enhanced weathering.


Conclusion

Biochar is not risk-free, but its risks are identifiable, manageable, and often lower than other carbon removal pathways.

-Non-additionality is solved with clear baselines.

-Reversal risk is minimized through stable chemistry.

-Over-crediting is prevented by conservative methodologies.

-Leakage is reduced by strict feedstock rules.

-Delivery is secured through diversified networks.

For investors, corporates, and communities, this means biochar credits can be a trusted part of net zero strategies. The key lies in good governance, transparent MRV, and community-centered implementation.

In short: biochar projects succeed when risks are acknowledged, measured, and managed — not ignored.


About Anaxee:

Anaxee drives large-scale, country-wide Climate and Carbon Credit projects across India. We specialize in Nature-Based Solutions (NbS) and community-driven initiatives, providing the technology and on-ground network needed to execute, monitor, and ensure transparency in projects like agroforestry, regenerative agriculture, improved cookstoves, solar devices, water filters and more. Our systems are designed to maintain integrity and verifiable impact in carbon methodologies.

Beyond climate, Anaxee is India’s Reach Engine- building the nation’s largest last-mile outreach network of 100,000 Digital Runners (shared, tech-enabled field force). We help corporates, agri-focused companies, and social organizations scale to rural and semi-urban India by executing projects in 26 states, 540+ districts, and 11,000+ pin codes, ensuring both scale and 100% transparency in last-mile operations.

Biochar in hand